	If you assume this is true	To prove that this is true
$\forall x. A$	Initially, do nothing . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .	Have the reader pick an arbitrary <i>x</i> . We then prove <i>A</i> is true for that choice of <i>x</i> .
$\exists x. A$	Introduce a variable x into your proof that has property A.	Find an x where A is true. Then prove that A is true for that specific choice of x.
$A \rightarrow B$	Initially, do nothing . Once you know A is true, you can conclude B is also true.	Assume <i>A</i> is true, then prove <i>B</i> is true.
$A \land B$	Assume A. Also assume B.	Prove A. Also prove B.
$A \lor B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)
$A \leftrightarrow B$	Assume $A \rightarrow B$ and $B \rightarrow A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.